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1. Introduction

In the recent years, an essential progress has been achieved in understanding the semi-

classical limit of the string/gauge theory duality [1]. This initiated also an interest in the

investigation of the M-theory lift of this semiclassical correspondence and in particular,

in obtaining new membrane solutions in curved space-times and finding relations between

their energy and the other conserved charges [2]-[11]. So far, such relations have been ob-

tained for the following target spaces: AdSp ×Sq [2, 3, 5, 8]-[10], AdS4 ×Q1,1,1 [5], warped

AdS5 × M6 [5], 11-dimensional AdS-black hole [5], and manifolds of G2 holonomy [5, 11].

In [5], various rotating membrane configurations on different G2 holonomy backgrounds

have been studied systematically. In the semiclassical limit (large conserved charges), the

following relations between the energy and the corresponding charge K have been obtained:

E ∼ K1/2, E ∼ K2/3, E − K ∼ K1/3, E − K ∼ ln K. In [11], rotating membranes on a

manifold with exactly known metric of G2 holonomy [12] have been considered. The above

energy-charge relations, except the last one, have been reproduced and generalized for the

case of more than one conserved charges. Moreover, examples of more complicated depen-

dence of the energy on the charges have been found. The most general cases considered,

lead to algebraic equations of third or even forth order for the E2 as function of up to five

conserved momenta.
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It seems to us that an interesting task is to check if rotating strings in type IIA theory

in ten dimensions, can reproduce the energy-charge relations obtained in [5] and [11] for

rotating M2-branes.

In this paper, we consider rotating strings on type IIA background, which arises as

dimensional reduction of M-theory on the manifold of G2 holonomy, discovered in [12]. By

taking the semiclassical limit, we obtain that the rotating strings can reproduce only one

type of semiclassical behavior, exhibited by rotating M2-branes on G2 manifolds. Namely,

E ∼ K1/2 and generalizations thereof. Our further investigation shows that the rotat-

ing D2-branes reproduce two types of the semiclassical energy-charge relations known for

membranes in M-theory. These are generalizations of the dependencies E ∼ K1/2 and

E ∼ K2/3.

The paper is organized as follows. In section 2, we describe the type IIA background,

which we will use. In section 3, we settle the framework, which we will work in. In

section 4, we obtain three types of rotating string solutions and explicit expressions for the

corresponding conserved charges. Then, we take the semiclassical limit and derive different

energy-charge relations. In section 5, the same is done for rotating D2-branes. Section 6

is devoted to our concluding remarks.

2. The type IIA background

The type IIA background, in which we will search for rotating string and D2-brane solu-

tions, has the form [12]

ds2
10 = r

1/2
0 C

{

−(dx0)2 + δIJdxIdxJ + A2
[

(g1)2 + (g2)2
]

+ B2
[

(g3)2 + (g4)2
]

+ D2(g5)2
}

+ r
1/2
0

dr2

C
, (I, J = 1, 2, 3), r0 = const,

eΦ = r
3/4
0 C3/2, F2 = sin θ1dφ1 ∧ dθ1 − sin θ2dφ2 ∧ dθ2. (2.1)

Here, g1,. . . ,g5 are given by

g1 = − sin θ1dφ1 − cos ψ1 sin θ2dφ2 + sinψ1dθ2,

g2 = dθ1 − sin ψ1 sin θ2dφ2 − cos ψ1dθ2,

g3 = − sin θ1dφ1 + cos ψ1 sin θ2dφ2 − sinψ1dθ2,

g4 = dθ1 + sin ψ1 sin θ2dφ2 + cos ψ1dθ2,

g5 = dψ1 + cos θ1dφ1 + cos θ2dφ2,

and the functions A, B, C and D depend on the radial coordinate r only:

A =
1√
12

√

(r − 3r0/2)(r + 9r0/2), B =
1√
12

√

(r + 3r0/2)(r − 9r0/2),

C =

√

(r − 9r0/2)(r + 9r0/2)

(r − 3r0/2)(r + 3r0/2)
, D = r/3. (2.2)

In (2.1), Φ and F2 are the Type IIA dilaton and the field strength of the Ramond-Ramond

one-form gauge field respectively.
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The above ten dimensional background arises as dimensional reduction of the following

solution of the eleven dimensional supergravity [12]

l−2
11 ds2

11 = −(dx0)2 + δIJdxIdxJ + ds2
7, (2.3)

ds2
7 = dr2/C2 + A2

[

(g1)2 + (g2)2
]

+ B2
[

(g3)2 + (g4)2
]

+ D2(g5)2 + r0 C2(g6)2,

where l11 is the eleven dimensional Planck length and

g6 = dψ2 + cos θ1dφ1 − cos θ2dφ2.

The type IIA solution (2.1) describes a D6-brane wrapping the S3 in the deformed

conifold geometry. For r → ∞, the metric becomes that of a singular conifold, the dilaton is

constant, and the flux is through the S2 surrounding the wrapped D6-brane. For r−9r0/2 =

ε → 0, the string coupling eΦ goes to zero like ε3/4, whereas the curvature blows up as

ε−3/2 just like in the near horizon region of a flat D6-brane. This means that classical

supergravity is valid for sufficiently large radius. However, the singularity in the interior

is the same as the one of flat D6 branes, as expected. On the other hand, the dilaton

continuously decreases from a finite value at infinity to zero, so that for small r0 classical

string theory is valid everywhere. As explained in [12], the global geometry is that of

a warped product of flat Minkowski space and a non-compact space, Y6, which for large

radius is simply the conifold since the backreaction of the wrapped D6 brane becomes less

and less important. However, in the interior, the backreaction induces changes on Y6 away

from the conifold geometry. For r → 9r0/2, the S2 shrinks to zero size, whereas an S3 of

finite size remains. This behavior is similar to that of the deformed conifold but the two

metrics are different.

3. The set-up

The ten dimensional background, described in the previous section, does not depend on

part of the target space coordinates xM , M = 0, 1, . . . , 9. We denote them by xµ and the

remaining ones by xa: xM = (xµ, xa). Further on, we will use the following ansatz for the

string and D2-brane embedding coordinates xM = XM (ξm)

Xµ(ξm) = Λµ
mξm, Xa(ξm) = Za(ξp), ξm = (ξ0, . . . , ξp), (3.1)

where Λµ
m are constants, ξp = ξ1 for the string and ξp = ξ2 for the D2-brane.

3.1 Rotating strings

In our further considerations, we will use the Polyakov action for strings embedded in

curved space-time with metric tensor gMN (x), interacting with a background 2-form gauge

field bMN (x) via Wess-Zumino term

SP = −T

2

∫

d2ξ
(√−γγmnGmn − εmnBmn

)

, (3.2)

ξm = (ξ0, ξ1), m, n = (0, 1),
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where

Gmn = ∂mXM∂nXNgMN , Bmn = ∂mXM∂nXN bMN , (∂m = ∂/∂ξm),

are the fields induced on the string worldsheet, γ is the determinant of the auxiliary world-

sheet metric γmn, γmn is its inverse, and T = 1/2πα′ is the string tension.

For our background (2.1), the action (3.2) reduces to

SP =

∫

d2ξLP , LP = −T

2

√−γγmnGmn. (3.3)

The equations of motion for XM following from (3.3) are:

−gLK

[

∂m

(√−γγmn∂nXK
)

+
√−γγmnΓK

MN∂mXM∂nXN
]

= 0, (3.4)

where

ΓL,MN = gLKΓK
MN =

1

2
(∂MgNL + ∂NgML − ∂LgMN ) ,

are the components of the symmetric connection corresponding to the metric gMN . The

constraints are obtained by varying the action (3.3) with respect to γmn:

δγmn
SP = 0 ⇒

(

γklγmn − 2γkmγln
)

Gmn = 0. (3.5)

Further on, we will work in conformal gauge γmn = ηmn = diag(−1, 1), in which the

equations of motion (3.4) and constraints (3.5) simplify to

gLKηmn
(

∂m∂nXK + ΓK
MN∂mXM∂nXN

)

= 0. (3.6)

G00 + G11 = 0, (3.7)

G01 = 0. (3.8)

Taking into account the ansatz (3.1), one obtains that the metric induced on the string

worldsheet is given by (the prime is used for d/dξ1)

G00 = Λµ
0Λν

0gµν , G11 = gabZ
′aZ ′b + 2Λµ

1gµaZ
′a + Λµ

1Λν
1gµν ,

G01 = Λµ
0

(

gµaZ
′a + Λν

1gµν

)

.

The Lagrangian density in the action (3.3) reduces to

LA
s (ξ1) = −T

2

(

gabZ
′aZ ′b + 2Λµ

1gµaZ
′a + ηmnΛµ

mΛν
ngµν

)

. (3.9)

LA
s does not depend on Xµ, so the conjugated momenta

Pµ = TΛν
0

∫

dξ1gµν (3.10)

are conserved, i.e. they do not depend on the proper time ξ0.
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Let us introduce the density

PM ≡ ∂LP

∂(∂1XM )
= −T

√−γγ1ngMN∂nXN = −T
(

gMbZ
′b + Λν

1gMν

)

. (3.11)

In terms of PM , the equations of motion (3.6) read

[

Pµ(ξ1)
]′

= 0, (3.12)

(Pa)
′ − ∂LA

s

∂Za
= 0. (3.13)

The equations (3.12) mean that Pµ are constants of the motion: Pµ = constants. The

remaining equations (3.13) may be rewritten as

gabZ
′′b + Γa,bcZ

′bZ ′c =
1

2
∂aU + 2∂[aAb]Z

′b, (3.14)

∂[aAb] =
1

2
(∂aAb − ∂bAa) .

In (3.14), an effective scalar potential U and an effective 1-form gauge field Aa appeared.

They are given by

U = ηmnΛµ
mΛν

ngµν +
2Λµ

1Pµ

T
, Aa = Λµ

1gaµ.

The constraints (3.7), (3.8) take the form

gabZ
′aZ ′b = U , Λµ

0

(

gµaZ
′a + Λν

1gµν

)

= 0. (3.15)

Here, we are interested in obtaining rotating string solutions for which the conditions

Pµ = constants and the second constraint in (3.15) are identically satisfied by appropri-

ate choice of the embedding parameters Λµ
m. Then, the problem reduces to solving the

equations of motion (3.14) and the first constraint in (3.15). We further restrict ourselves

to the simplest case, when the embedding is such that the background seen by the string

depends only on the radial coordinate r. In this case, the solution is [13]

ξ1 (r) =

∫ r

rmin

(grr

U
)1/2

dt. (3.16)

On the solution (3.16), the conserved generalized momenta (3.10) take the form

Pµ = 2TΛν
0

∫ rmax

rmin

gµν

(grr

U
)1/2

dt. (3.17)

3.2 Rotating D2-branes

The Dirac-Born-Infeld type action for D2-brane in ten dimensional space-time with met-

ric tensor gMN (x), interacting with a background 3-form Ramond-Ramond gauge field

cMNP (x) via Wess-Zumino term, can be written in string frame as

SDBI = −TD2

∫

d3ξ
{

e−Φ
√

− det (Gmn + Bmn + 2πα′Fmn) (3.18)

− εm1m2m3

3!
∂m1X

M1∂m2X
M2∂m3X

M3cM1M2M3

}

.
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Here, TD2 is the D2-brane tension, Gmn, Bmn and Φ are the pullbacks of the background

metric, antisymmetric tensor and dilaton to the D2-brane worldvolume, while Fmn is the

field strength of the worldvolume U(1) gauge field Am: Fmn = 2∂[mAn]. For our back-

ground, (3.18) reduces to 1

SDBI = −TD2

∫

d3ξe−Φ
√

− detGmn,

which is classically equivalent to the following action [14]

SD2 =

∫

d3ξLD2 =

∫

d3ξ
e−Φ

4λ0

[

G00 − 2λiG0i + λiλjGij −
(

2λ0TD2

)2
det Gij

]

, (3.19)

where λm = (λ0, λi), (i, j = 1, 2) are Lagrange multipliers, which equations of motion

generate the independent constraints

G00 − 2λjG0j + λiλjGij +
(

2λ0TD2

)2
detGij = 0, (3.20)

G0j − λiGij = 0. (3.21)

Further on, we will use the action (3.19) because it does not contain square root opposite

to the DBI type action (3.18), thus avoiding the introduction of additional nonlinearities

in the equations of motion.

The equations of motion for XM following from (3.19), in the worldvolume gauge

λm = consants, are (G ≡ detGij)

gMN

[

(

∂0 − λi∂i

) (

∂0 − λj∂j

)

XN −
(

2λ0TD2

)2
∂i

(

GGij∂jX
N

)

]

(3.22)

+

[

ΓM,NK −
(

gMK∂NΦ − 1

2
gNK∂MΦ

)]

(

∂0 − λi∂i

)

XN
(

∂0 − λj∂j

)

XK

−
(

2λ0TD2

)2
G

[

(ΓM,NK − gMK∂NΦ)Gij∂iX
N∂jX

K +
1

2
∂MΦ

]

= 0.

In practice, it turns out that using the diagonal gauge λi = 0 simplify the considerations

a lot [9]. That is why, we restrict ourselves namely to this gauge from now on. In this

case, (3.19), (3.20), (3.21) and (3.22) reduce to

Sgf
D2 =

∫

d3ξLgf
D2 =

∫

d3ξ
e−Φ

4λ0

[

G00 −
(

2λ0TD2

)2
G

]

, (3.23)

G00 +
(

2λ0TD2

)2
G = 0, (3.24)

G0i = 0, (3.25)

gMN

[

∂2
0XN −

(

2λ0TD2

)2
∂i

(

GGij∂jX
N

)

]

(3.26)

+

[

ΓM,NK −
(

gMK∂NΦ − 1

2
gNK∂MΦ

)]

∂0X
N∂0X

K

−
(

2λ0TD2

)2
G

[

(ΓM,NK − gMK∂NΦ)Gij∂iX
N∂jX

K +
1

2
∂MΦ

]

= 0.

1For Am = ∂mf .
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Taking into account the ansatz (3.1), one obtains that the metric induced on the

D2-brane worldvolume is given by (the prime is used for d/dξ2)

G00 = Λµ
0Λν

0gµν , G11 = Λµ
1Λν

1gµν , G22 = gabZ
′aZ ′b + 2Λµ

2gµaZ
′a + Λµ

2Λν
2gµν ,

G01 = Λµ
0Λν

1gµν , G02 = Λµ
0

(

gµaZ
′a + Λν

2gµν

)

, G12 = Λµ
1

(

gµaZ
′a + Λν

2gµν

)

.

Correspondingly, the Lagrangian density in the action (3.23) reduces to

LA(ξ2) =
1

4λ0

(

K̃abZ
′aZ ′b + 2ÃaZ

′a − Ṽ
)

, (3.27)

where

K̃ab = −
(

2λ0TD2

)2
Λµ

1Λν
1 (gabgµν − gaµgbν) e−Φ,

Ãa =
(

2λ0TD2

)2
Λµ

1Λν
1Λρ

2 (gaµgνρ − gaρgµν) e−Φ,

Ṽ =
[

−Λµ
0Λν

0gµν +
(

2λ0TD2

)2
Λµ

1Λν
1Λ

ρ
2Λ

λ
2 (gµνgρλ − gµρgνλ)

]

e−Φ.

As far as LA does not depend on Xµ, the momenta

Pµ =
Λν

0

2λ0

∫ ∫

dξ1dξ2gµνe−Φ (3.28)

are conserved.

If we introduce the densities

Pi
M =

∂Lgf
D2

∂ (∂iXM )
,

the equations of motion (3.26) acquire the form

[

P2
µ(ξ2)

]′
= 0, (3.29)

(

P2
a

)′ − ∂LA

∂Za
= 0. (3.30)

The equations (3.29) just state that P2
µ are constants of the motion:

P2
µ = 2λ0T 2

D2e
−ΦΛν

1Λρ
1

[

(gµνgρa − gµagνρ)Z ′a + Λλ
2 (gµνgρλ − gµλgνρ)

]

= constants.(3.31)

In the case under consideration, this is possible only for P2
µ = 0. The remaining equa-

tions (3.30) may be rewritten as

K̃abZ
′′b + Γ̃a,bcZ

′bZ ′c − 2∂[aÃb]Z
′b +

1

2
∂aṼ = 0, (3.32)

where

Γ̃a,bc =
1

2

(

∂bK̃ca + ∂cK̃ba − ∂aK̃bc

)

.
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The constraints (3.24) and (3.25) take the form

K̃abZ
′aZ ′b + Ṽ = 0, (3.33)

Λµ
0Λν

1gµν = 0, (3.34)

Λµ
0

(

gµaZ
′a + Λν

2gµν

)

= 0. (3.35)

We will search for D2-brane solutions for which the conditions (3.34), (3.35) and P2
µ = 0

are identically satisfied due to appropriate choice of the embedding parameters Λµ
m. Then,

the investigation of the D2-brane dynamics reduces to the problem of solving the equations

of motion (3.32) and the remaining constraint (3.33). In this article, we restrict ourselves to

the simplest case, when the embedding is such that the background seen by the D2-brane

depends on the radial coordinate r only. Then, the constraint (3.33) is first integral of the

equation of motion (3.32) for Za(ξ2) = r(ξ2), and the solution is given by

ξ2 (r) =

∫ r

rmin

(

−K̃rr

Ṽ

)1/2

dt. (3.36)

On the solution (3.36), the conserved generalized momenta (3.28) take the form

Pµ =
πΛν

0

λ0

∫ rmax

rmin

gµν

(

−K̃rr

Ṽ

)1/2

e−Φdt. (3.37)

4. Rotating string solutions, conserved charges and their semiclassical lim-

its

As we already mentioned in the previous section, we are interested here in obtaining ro-

tating string solutions, for which the embedding is such that the background seen by the

string depends only on the radial coordinate r. This leads to the following three cases2

1. ψ1, φ1, φ2 fixed to ψ0
1, φ0

1, φ0
2

ds2 = r
1/2
0

{

C
[

−(dx0)2 + δIJdxIdxJ +
(

A2 + B2
) (

dθ2
1 + dθ2

2

)

− 2
(

A2 − B2
)

cos ψ0
1dθ1dθ2

]

+
dr2

C

}

. (4.1)

2. ψ1, φ1, θ2 fixed to ψ0
1, φ0

1, θ0
2

ds2 = r
1/2
0

{

C
{

−(dx0)2 + δIJdxIdxJ +
(

A2 + B2
)

dθ2
1

+
[(

A2 + B2
)

sin2 θ0
2 + D2 cos2 θ0

2

]

dφ2
2 (4.2)

− 2
(

A2 − B2
)

sinψ0
1 sin θ0

2dθ1dφ2

}

+
dr2

C

}

.

2For all of them F2 = 0.
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3. ψ1, θ1, θ2 fixed to ψ0
1, θ0

1, θ0
2

ds2 = r
1/2
0

{

C
{

−(dx0)2 + δIJdxIdxJ +
[(

A2 + B2
)

sin2 θ0
1 + D2 cos2 θ0

1

]

dφ2
1

+
[(

A2 + B2
)

sin2 θ0
2 + D2 cos2 θ0

2

]

dφ2
2 (4.3)

+ 2
[(

A2 − B2
)

cos ψ0
1 sin θ0

1 sin θ0
2 + D2 cos θ0

1 cos θ0
2

]

dφ1dφ2

}

+
dr2

C

}

.

There are also other possibilities, but they lead to the same type of metrics with respect

to other coordinates.

Let us begin with considering string moving in the background (4.1). In this case, the

most general ansatz of the type (3.1), which ensures that the conditions Pµ = 0 and the

second constraint in (3.15) are identically satisfied is

X0 = Λ0
0ξ

0, XI = ΛI
0ξ

0, r = r(ξ1), θ1 = Λθ1
0 ξ0, θ2 = Λθ2

0 ξ0. (4.4)

It corresponds to string extended in the radial direction r, and rotating in the planes given

by the angles θ1 and θ2 with angular momenta Pθ1 and Pθ2 . At the same time, the string

moves along x0-coordinate with constant energy E, and along xI with constant momenta

PI .

From the first constraint in (3.15),

grrr
′2 − U =

r
1/2
0

C
r′2 − r

1/2
0 C

(

v2
0 − Λ2

−A2 − Λ2
+B2

)

= 0,

where

v2
0 =

(

Λ0
0

)2 − δIJΛI
0Λ

J
0 =

(

Λ0
0

)2 − Λ2
0, (4.5)

Λ2
± =

(

Λθ1
0

)2
+

(

Λθ2
0

)2
± 2Λθ1

0 Λθ2
0 cos ψ0

1 ,

one obtains the turning points of the effective one-dimensional periodic motion by solving

the equation r′ = 0. In the case under consideration, the result is3

rmin = 9r0/2 ≡ 3l, rmax = r1 = l

[

2

√

k2 + 3

4
+

3v2
0

l2
(

Λ2
+ + Λ2

−

) + k

]

> 3l,

r2 = −l

[

2

√

k2 + 3

4
+

3v2
0

l2
(

Λ2
+ + Λ2

−

) − k

]

< 0, k =
Λ2

+ − Λ2
−

Λ2
+ + Λ2

−

. (4.6)

In accordance with (3.16), we obtain the following expression for the string solution

(∆r = r − 3l, ∆r1 = r1 − 3l)

ξ1(r) =
8

(

Λ2
+ + Λ2

−

)1/2

[

l∆r

(3l − r2)∆r1

]1/2

× (4.7)

F
(5)
D

(

1/2;−1/2,−1/2, 1/2, 1/2, 1/2; 3/2;−∆r

2l
,−∆r

4l
,−∆r

6l
,− ∆r

3l − r2
,

∆r

∆r1

)

,

where F
(5)
D is hypergeometric function of five variables.4

3For all string and D2-brane solutions we are considering here, rmin = 9r0/2 ≡ 3l.
4The definition and some properties of the hypergeometric functions F

(n)
D (a; b1, . . . , bn; c; z1, . . . , zn) are

given in the appendix.

– 9 –



J
H
E
P
0
8
(
2
0
0
6
)
0
2
9

Now, we can compute the conserved momenta on the obtained solution. According

to (3.17), they are (E = −P0):

E

Λ0
0

=
PI

ΛI
0

= T

[

27l∆r1
(

Λ2
+ + Λ2

−

)

(3l − r2)

]1/2
(

1 +
∆r1

3l − r2

)−1/2

(4.8)

×F
(1)
D

(

1/2; 1/2; 3/2;
1

1 + 3l−r2
∆r1

)

,

Pθ1 =
(

Λθ1
0 − Λθ2

0 cos ψ0
1

)

IA +
(

Λθ1
0 + Λθ2

0 cos ψ0
1

)

IB , (4.9)

Pθ2 =
(

Λθ2
0 − Λθ1

0 cos ψ0
1

)

IA +
(

Λθ2
0 + Λθ1

0 cos ψ0
1

)

IB ,

where

IA = T

[

27l5∆r1
(

Λ2
+ + Λ2

−

)

(3l − r2)

]1/2
(

1 +
∆r1

2l

) (

1 +
∆r1

6l

)(

1 +
∆r1

3l − r2

)−1/2

(4.10)

×F
(3)
D

(

1/2;−1,−1, 1/2; 3/2;
1

1 + 2l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−r2
∆r1

)

,

IB =
T

9

[

29 (l∆r1)
3

(

Λ2
+ + Λ2

−

)

(3l − r2)

]1/2
(

1 +
∆r1

4l

)(

1 +
∆r1

3l − r2

)−1/2

(4.11)

×F
(2)
D

(

1/2;−1, 1/2; 5/2;
1

1 + 4l
∆r1

,
1

1 + 3l−r2
∆r1

)

.

Our next task is to find the relation between the energy E and the other conserved

quantities PI , Pθ1 , Pθ2 , in the semiclassical limit (large conserved charges), which corre-

sponds to r1 → ∞. In this limit,

E

Λ0
0

=
PI

ΛI
0

=
πT

(

23l
)1/2

(

Λ2
+ + Λ2

−

)1/2
, IA = IB =

πT (2l)1/2 v2
0

(

Λ2
+ + Λ2

−

)3/2
,

which leads to

E2 = P2 + 2πT (6r0)
1/2 (

P 2
θ1

+ P 2
θ2

)1/2
, P2 = δIJPIPJ . (4.12)

This is a generalization of the energy-charge relation E ∼ K1/2 for the case PI 6= 0 and two

conserved angular momenta Pθ1 , Pθ2 . Thus, the above string configuration has the same

semiclassical behavior as the membrane in (4.20) of [11], which is given by the relation

E2 = P2 + 2
√

6π2TM2l
3
11 | Λ1 |

(

P 2
θ + P 2

θ̃

)1/2
.

Now, let us consider rotating string on the background (4.2). To ensure that the

conditions Pµ = 0 and the second constraint in (3.15) are satisfied, we have to choose the

following embedding

X0 = Λ0
0ξ

0, XI = ΛI
0ξ

0, r = r(ξ1), θ1 = Λθ
0ξ

0, φ2 = Λφ
0ξ0. (4.13)
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This ansatz is analogous to the previous one, with θ2 replaced by φ2. The first constraint

in (3.15) now reads,

grrr
′2 − U =

r
1/2
0

C
r′2 − r

1/2
0 C

(

v2
0 − Λ̄2

−A2 − Λ̄2
+B2 − Λ2

DD2
)

= 0, (4.14)

where v2
0 is given in (4.5) and

Λ̄2
± =

(

Λθ
0

)2
+

(

Λφ
0

)2
sin2 θ0

2 ± 2Λθ
0Λ

φ
0 sinψ0

1 sin θ0
2,

Λ2
D =

(

Λφ
0

)2
cos2 θ0

2. (4.15)

From here, one obtains the solutions of the equation r′ = 0:

rmin = 9r0/2 ≡ 3l, rmax = r1 > 3l, r2 < 0.

The rotating string solution ξ1(r) expresses through the same hypergeometric function as

in (4.7), but now depends on different parameters

ξ1(r) =
8

(

Λ̄2
+ + Λ̄2

− + 4Λ2
D/3

)1/2

[

l∆r

(3l − r2)∆r1

]1/2

× (4.16)

F
(5)
D

(

1/2;−1/2,−1/2, 1/2, 1/2, 1/2; 3/2;−∆r

2l
,−∆r

4l
,−∆r

6l
,− ∆r

3l − r2
,

∆r

∆r1

)

.

The same is true for E and PI (compare with (4.8))

E

Λ0
0

=
PI

ΛI
0

= 8T

[

2l∆r1
(

Λ̄2
+ + Λ̄2

− + 4Λ2
D/3

)

(3l − r2)

]1/2
(

1 +
∆r1

3l − r2

)−1/2

(4.17)

×F
(1)
D

(

1/2; 1/2; 3/2;
1

1 + 3l−r2
∆r1

)

.

For the conserved angular momenta Pθ and Pφ, (3.17) gives

Pθ =
(

Λθ
0 − Λφ

0 sin ψ0
1 sin θ0

2

)

JA +
(

Λθ
0 + Λφ

0 sin ψ0
1 sin θ0

2

)

JB , (4.18)

Pφ =
(

Λφ
0 sin θ0

2 − Λθ
0 sin ψ0

1

)

sin θ0
2JA +

(

Λφ
0 sin θ0

2 + Λθ
0 sin ψ0

1

)

sin θ0
2JB

+Λφ
0 cos2 θ0

2JD,

where

JA = 8T

[

2l5∆r1
(

Λ̄2
+ + Λ̄2

− + 4Λ2
D/3

)

(3l − r2)

]1/2
(

1 +
∆r1

2l

)(

1 +
∆r1

6l

)

(4.19)

×
(

1 +
∆r1

3l − r2

)−1/2

F
(3)
D

(

1/2;−1,−1, 1/2; 3/2;
1

1 + 2l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−r2
∆r1

)

,
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JB =
16

9
T

[

2(l∆r1)
3

(

Λ̄2
+ + Λ̄2

− + 4Λ2
D/3

)

(3l − r2)

]1/2
(

1 +
∆r1

4l

)(

1 +
∆r1

3l − r2

)−1/2

×F
(2)
D

(

1/2;−1, 1/2; 5/2;
1

1 + 4l
∆r1

,
1

1 + 3l−r2
∆r1

)

, (4.20)

JD = 8T

[

2l5∆r1
(

Λ̄2
+ + Λ̄2

− + 4Λ2
D/3

)

(3l − r2)

]1/2
(

1 +
∆r1

3l

)(

1 +
∆r1

3l − r2

)−1/2

×F
(2)
D

(

1/2;−2, 1/2; 3/2;
1

1 + 3l
∆r1

,
1

1 + 3l−r2
∆r1

)

. (4.21)

In the semiclassical limit r1 → ∞, one gets the following dependence of the energy on

the charges PI , Pθ and Pφ

E2 = P2 + 2πT (6r0)
1/2

(

P 2
θ +

3P 2
φ

3 − cos2 θ0
2

)1/2

. (4.22)

Again, this is a generalization of the energy-charge relation E ∼ K1/2, and for θ0
2 =

π/2 (4.22) has the same form as the expression in (4.12).

Now, we turn to the case of string rotating in the background given in (4.3). To satisfy

the conditions Pµ = 0 and the second constraint in (3.15), we use the ansatz

X0 = Λ0
0ξ

0, XI = ΛI
0ξ

0, r = r(ξ1), φ1 = Λφ1
0 ξ0, φ2 = Λφ2

0 ξ0. (4.23)

This embedding is analogous to the one just considered, where θ1 is replaced by φ1.

The first constraint in (3.15) takes the form,

grrr
′2 − U =

r
1/2
0

C
r′2 − r

1/2
0 C

(

v2
0 − Λ̃2

+A2 − Λ̃2
−B2 − Λ̃2

DD2
)

= 0, (4.24)

where v2
0 is the same as before, and

Λ̃2
± =

(

Λφ1
0

)2
sin2 θ0

1 +
(

Λφ2
0

)2
sin2 θ0

2 ± 2Λφ1
0 Λφ2

0 cos ψ0
1 sin θ0

1 sin θ0
2,

Λ̃2
D =

(

Λφ1
0 cos θ0

1 + Λφ2
0 cos θ0

2

)2
. (4.25)

Since (4.24) can be obtained from (4.14) by the replacements Λ̄2
± → Λ̃2

∓, Λ2
D → Λ̃2

D, in the

same way one can receive the new values for rmax = r1 and r2, the new string solution

from (4.16), the new expressions for the energy E and the momenta PI from (4.17). In

accordance with (3.17), the conserved angular momenta Pφ1 and Pφ2 are given by

Pφ1 =
(

Λφ1
0 sin θ0

1 + Λφ2
0 cos ψ0

1 sin θ0
2

)

sin θ0
1KA (4.26)

+
(

Λφ1
0 sin θ0

1 − Λφ2
0 cos ψ0

1 sin θ0
2

)

sin θ0
1KB

+
(

Λφ1
0 cos θ0

1 + Λφ2
0 cos θ0

2

)

cos θ0
1KD,
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Pφ2 =
(

Λφ2
0 sin θ0

2 + Λφ1
0 cos ψ0

1 sin θ0
1

)

sin θ0
2KA (4.27)

+
(

Λφ2
0 sin θ0

2 − Λφ1
0 cos ψ0

1 sin θ0
1

)

sin θ0
2KB

+
(

Λφ1
0 cos θ0

1 + Λφ2
0 cos θ0

2

)

cos θ0
2KD,

where KA, KB , KD can be obtained from (4.19), (4.20), (4.21), by the above mentioned

replacements.

Taking the semiclassical limit (r1 → ∞) in the expressions for E, PI , Pφ1 and Pφ2 ,

after some calculations, one receives the following relation between them

E2 = P2 + 2πT

(

6r0

∆

)1/2

× (4.28)

[(

3 − cos2 θ0
2

)

P 2
φ1

+
(

3 − cos2 θ0
1

)

P 2
φ2

− 4Pφ1Pφ2 cos θ0
1 cos θ0

2

]1/2
,

where

∆ = 3 − cos2 θ0
1 − cos2 θ0

2 − cos2 θ0
1 cos2 θ0

2.

This is another generalization of the energy-charge relation E ∼ K1/2, and for θ0
1 = θ0

2 =

π/2 has the same form as the relation in (4.12).

The equality (4.28) is only valid for ∆ 6= 0. To see what will be the semiclassical

behavior of the rotating string configuration for ∆ = 0, let us consider the particular

case θ0
1 = θ0

2 = 0. According to (4.26), (4.27), the two angular momenta become equal,

Pφ1 = Pφ2 ≡ Pφ. Performing the necessary computations, one arrives at

E2 = P2 + 6πTr
1/2
0 Pφ, (4.29)

which describes the same type of semiclassical behavior.

Comparing (4.4), (4.13) and (4.23) with each other, one sees that none of them rep-

resents string configuration with nontrivial wrapping. Then a natural question is if such

solutions do exist at all. The analysis shows that the reason for the absence of wrapping

is that we have too many restrictions on the embedding parameters Λµ
m for the back-

grounds (4.1), (4.2) and (4.3). However, it turns out that if we restrict ourselves to partic-

ular cases of these backgrounds by fixing the values of part of the angles θ0
1,2, ψ0

1 or φ0
1,2,

we can obtain wrapped rotating string solutions. An example of such solution is given by

the ansatz

X0 = Λ0
0ξ

0, XI = ΛI
0ξ

0, r = r(ξ1), θ0
1 = θ0

2 = 0,

ψ1 = Λψ1
0 ξ0 − (Λφ1

1 + Λφ2
1 )ξ1, φ1 = Λφ1

0 ξ0 + Λφ1
1 ξ1, φ2 = Λφ2

0 ξ0 + Λφ2
1 ξ1.

The background metric felt by the string is

ds2 = r
1/2
0

{

C
[

−(dx0)2 + δIJdxIdxJ + D2d(ψ1 + φ1 + φ2)
2
]

+
dr2

C

}

.

It can be seen as particular case of (4.3) after the replacement (ψ1 + φ1 + φ2) → (φ1 + φ2).

The calculations lead to the same result about the semiclassical behavior of this wrapped

string configuration as in (4.29), where Pφ must be replaced with Pψ1 , Pφ1 , or Pφ2 , which

are equal to each other.
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Another example of wrapped string solution is

X0 = Λ0
0ξ

0, XI = ΛI
0ξ

0, r = r(ξ1), φ0
1 = θ0

2 = 0,

θ1 = Λθ1
0 ξ0, ψ1 = Λψ1

0 ξ0 + Λψ1
1 ξ1, φ2 = Λφ2

0 ξ0 − Λψ1
1 ξ1.

The background seen by the string now is

ds2 = r
1/2
0

{

C
[

−(dx0)2 + δIJdxIdxJ + (A2 + B2)dθ2
1 + D2d(ψ1 + φ2)

2
]

+
dr2

C

}

,

which can be considered as particular case of (4.2) after the replacement (ψ1 + φ2) → φ2.

In the semiclassical limit, for the above string configuration, one receives the following

energy-charge relation (Pψ1 = Pφ2)

E2 = P2 + 2πT (3r0)
1/2 (

2P 2
θ1

+ 3P 2
ψ1

)1/2
. (4.30)

It is particular case of (4.22).

Let us finally note that in considering the semiclassical limit (large charges), we take

into account only the leading terms in the expressions for the conserved quantities. How-

ever, there is no problem to include the higher order terms. For instance, the inclusion of

the next-to-leading order term, modifies (4.30) to

E2 = P2 + 2πT (3r0)
1/2 (

2P 2
θ1

+ 3P 2
ψ1

)1/2 − 1

2
(πT )2(3r0)

3
P 2

θ1

2P 2
θ1

+ 3P 2
ψ1

. (4.31)

5. Rotating D2-brane solutions, conserved charges and their semiclassical

limits

In this section, we will consider D2-branes rotating in the backgrounds (4.1), (4.2) and (4.3),

as it was already done for strings. It turns out that for every one of these three back-

grounds, there exist two D2-brane configurations of the type (3.1), which ensure that the

equalities (3.34), (3.35) and P2
µ = 0 are identically satisfied.

We begin with the following D2-brane embedding in the target space metric (4.1):

X0 = Λ0
0ξ

0 +
(Λ0.Λ1)

Λ0
0

(

ξ1 + cξ2
)

, XI = ΛI
0ξ

0 + ΛI
1

(

ξ1 + cξ2
)

, (5.1)

r = r(ξ2), θ1 = Λθ1
0 ξ0, θ2 = Λθ2

0 ξ0; (Λ0.Λ1) = δIJΛI
0Λ

J
1 , c = constant.

It corresponds to D2-brane extended in the radial direction r, and rotating in the planes

given by the angles θ1 and θ2 with constant angular momenta Pθ1 and Pθ2 . It is nontrivially

spanned along x0 and xI and moves with constant energy E, and constant momenta PI .

The metric induced on the D2-brane worldvolume is

G00 = −r
1/2
0 C

(

v2
0 − Λ2

−A2 − Λ2
+B2

)

,

G11 = r
1/2
0 MC, G12 = cG11, G22 = grrr

′2 + c2G11,
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where v2
0 and Λ± are defined in (4.5) and

M = Λ2
1 −

(Λ0.Λ1)
2

(

Λ0
0

)2 . (5.2)

The Lagrangian (3.27) takes the form

LA(ξ2) =
1

4λ0

(

K̃rrr
′2 − Ṽ

)

, K̃rr = −(2λ0TD2)
2r0Me−Φ,

Ṽ = r
1/2
0 C

(

v2
0 − Λ2

−A2 − Λ2
+B2

)

e−Φ.

From the yet unsolved constraint (3.33)

K̃rrr
′2 + Ṽ = 0,

one obtains the turning points of the effective one-dimensional periodic motion by solving

the equation r′ = 0. In the case under consideration, the result is given in (4.6).

Applying the general formula (3.36), we obtain the following expression for the D2-

brane solution

ξ2(r) =

∫ r

3l

[

−K̃rr(t)

Ṽ (t)

]1/2

dt =
16

3
λ0TD2

[

Ml
(

Λ2
+ + Λ2

−

)

(3l − r2)∆r1

]1/2

(2∆r)3/4 ×

F
(5)
D

(

3/4;−1/4,−1/4, 1/4, 1/2, 1/2; 7/4;−∆r

2l
,−∆r

4l
,−∆r

6l
,− ∆r

3l − r2
,

∆r

∆r1

)

. (5.3)

Now, we compute the conserved momenta on the obtained solution according to (3.37):

E

Λ0
0

=
PI

ΛI
0

= 8π2TD2

[

Ml
(

Λ2
+ + Λ2

−

)

(3l − r2)

]1/2

× (5.4)

(

1 +
∆r1

2l

)1/2 (

1 +
∆r1

4l

)1/2 (

1 +
∆r1

6l

)−1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(4)
D

(

1/2;−1/2,−1/2, 1/2, 1/2; 1;
1

1 + 2l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−r2
∆r1

)

,

Pθ1 =
(

Λθ1
0 − Λθ2

0 cos ψ0
1

)

ID
A1 +

(

Λθ1
0 + Λθ2

0 cos ψ0
1

)

ID
B1, (5.5)

Pθ2 =
(

Λθ2
0 − Λθ1

0 cos ψ0
1

)

ID
A1 +

(

Λθ2
0 + Λθ1

0 cos ψ0
1

)

ID
B1,

where

ID
A1 = 8π2TD2

[

Ml5
(

Λ2
+ + Λ2

−

)

(3l − r2)

]1/2

× (5.6)

(

1 +
∆r1

2l

)3/2 (

1 +
∆r1

4l

)1/2 (

1 +
∆r1

6l

)1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(4)
D

(

1/2;−3/2,−1/2,−1/2, 1/2; 1;
1

1 + 2l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−r2
∆r1

)

,
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ID
B1 =

4

3
π2TD2

[

Ml3
(

Λ2
+ + Λ2

−

)

(3l − r2)

]1/2

× (5.7)

∆r1

(

1 +
∆r1

2l

)1/2 (

1 +
∆r1

4l

)3/2 (

1 +
∆r1

6l

)−1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(4)
D

(

1/2;−1/2,−3/2, 1/2, 1/2; 2;
1

1 + 2l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−r2
∆r1

)

.

In the semiclassical limit, (5.4) - (5.7) simplify to

E

Λ0
0

=
PI

ΛI
0

=
2

3
π2TD2

(

M

Λ2
+ + Λ2

−

)1/2

,

Pθ1 = 2Λθ1
0 ID

A1, Pθ2 = 2Λθ2
0 ID

A1, ID
A1 = ID

B1 =

√
3π2TD2M

1/2

(

Λ2
+ + Λ2

−

)3/2
v2
0 .

From here, one obtains the following relation between the energy and the conserved charges

E2
(

E2 − P2
)2 − 23

35
(π2TD2)

2
[

Λ2
1E

2 − (Λ1.P)2
]

(

P 2
θ1

+ P 2
θ2

)

= 0, (5.8)

which is third order algebraic equation for E2. Therefore, this D2-brane configuration

reproduces particular case of the M2-brane semiclassical behavior given in (4.19) of [11]

{

E2
(

E2 − P2
)

− (2π2TM2l
3
11)

2
{

(Λ1 × Λ2)
2 E2 − [(Λ1 × Λ2) × P]2

}}2

−6(2π2TM2l
3
11)

2E2
[

Λ2
1E

2 − (Λ1.P)2
] (

P 2
θ + P 2

θ̃

)

= 0,

corresponding to (Λ1 × Λ2) = 0. For (Λ1.P) = 0, (5.8) reduces to

E2 = P2 +
23/2

35/2
π2TD2 | Λ1 |

(

P 2
θ1

+ P 2
θ2

)1/2
.

This is the same type energy-charge relation as the one obtained for the string in (4.12).

Let us now consider the other possible D2-brane embedding for the same background

metric (4.1). It is given by

X0 = Λ0
0ξ

0, XI = ΛI
0ξ

0, r = r(ξ2), (5.9)

θ1 = Λθ
0ξ

0 + Λθ
1ξ

1 + Λθ
2ξ

2, θ2 = Λθ
0ξ

0 − Λθ
1ξ

1 − Λθ
2ξ

2.

This ansatz describes D2-brane, which is extended along the radial direction r and rotates

in the planes defined by the angles θ1 and θ2, with equal angular momenta Pθ1 = Pθ2 = Pθ.

Now we have nontrivial wrapping along θ1 and θ2. In addition, the D2-brane moves along

x0 and xI with constant energy E and constant momenta PI respectively.

For the present case, the Lagrangian (3.27) reduces to

LA(ξ2) =
1

4λ0

(

K̃rrr
′2 − Ṽ

)

, K̃rr = −(2λ0TD2)
2r0

(

Λ2
1+A2 + Λ2

1−B2
)

e−Φ,

Ṽ = r
1/2
0 C

(

v2
0 − Λ̌2

−A2 − Λ̌2
+B2

)

e−Φ,
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where

Λ2
1± = 2

(

Λθ
1

)2
(

1 ± cos ψ0
1

)

, Λ̌2
± = 2

(

Λθ
0

)2
(

1 ± cos ψ0
1

)

.

The constraint (3.33)

K̃rrr
′2 + Ṽ = 0,

leads to the same solutions of the equation r′ = 0, as given in (4.6), but in terms of the

new parameters Λ̌± instead of Λ±.

Replacing the above expressions for K̃rr and Ṽ in (3.36), we obtain the D2-brane

solution:

ξ2(r) =
8

3
λ0TD2

[

l
(

Λ2
1+ + Λ2

1−

)

(3l − v+)(3l − v−)

3
(

Λ̌2
+ + Λ̌2

−

)

(3l − r2) ∆r1

]1/2

(2∆r)3/4 ×

F
(7)
D (3/4;−1/4,−1/4, 1/4,−1/2,−1/2, 1/2, 1/2; 7/4; (5.10)

−∆r

2l
,−∆r

4l
,−∆r

6l
,− ∆r

3l − v+
,− ∆r

3l − v−
,− ∆r

3l − r2
,

∆r

∆r1

)

,

where v± are the zeros of the polynomial

t2 − 2l
Λ2

1+ − Λ2
1−

Λ2
1+ + Λ2

1−

t − 3l2 = (t − v+)(t − v−).

In the case under consideration, the conserved quantities are E, PI and Pθ. By us-

ing (3.37), we derive the following result for them

E

Λ0
0

=
PI

ΛI
0

= 4π2TD2

[

l
(

Λ2
1+ + Λ2

1−

)

(3l − v+)(3l − v−)

3
(

Λ̌2
+ + Λ̌2

−

)

(3l − r2)

]1/2

× (5.11)

(

1 +
∆r1

2l

)1/2 (

1 +
∆r1

4l

)1/2 (

1 +
∆r1

6l

)−1/2

×
(

1 +
∆r1

3l − v+

)1/2 (

1 +
∆r1

3l − v−

)1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(6)
D (1/2;−1/2,−1/2, 1/2,−1/2,−1/2, 1/2; 1;

1

1 + 2l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−v+
∆r1

,
1

1 + 3l−v−
∆r1

1

1 + 3l−r2
∆r1

)

,

Pθ = Λθ
0

[(

1 − cos ψ0
1

)

ID
A2 +

(

1 + cos ψ0
1

)

ID
B2

]

,

where

ID
A2 = 4π2TD2

[

l5
(

Λ2
1+ + Λ2

1−

)

(3l − v+)(3l − v−)

3
(

Λ̌2
+ + Λ̌2

−

)

(3l − r2)

]1/2

×
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(

1 +
∆r1

2l

)3/2 (

1 +
∆r1

4l

)1/2 (

1 +
∆r1

6l

)1/2

×
(

1 +
∆r1

3l − v+

)1/2 (

1 +
∆r1

3l − v−

)1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(6)
D (1/2;−3/2,−1/2,−1/2,−1/2,−1/2, 1/2; 1;

1

1 + 2l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−v+
∆r1

,
1

1 + 3l−v−
∆r1

1

1 + 3l−r2
∆r1

)

,

ID
B2 = 2π2TD2

[

l3
(

Λ2
1+ + Λ2

1−

)

(3l − v+)(3l − v−)

33
(

Λ̌2
+ + Λ̌2

−

)

(3l − r2)

]1/2

×

∆r1

(

1 +
∆r1

2l

)1/2 (

1 +
∆r1

4l

)3/2 (

1 +
∆r1

6l

)−1/2

×
(

1 +
∆r1

3l − v+

)1/2 (

1 +
∆r1

3l − v−

)1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(6)
D (1/2;−1/2,−3/2, 1/2,−1/2,−1/2, 1/2; 2;

1

1 + 2l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−v+
∆r1

,
1

1 + 3l−v−
∆r1

1

1 + 3l−r2
∆r1

)

.

Taking the semiclassical limit in the above expressions5, we obtain the following de-

pendence of the energy on PI and Pθ:

E2 = P2 + 35/3(2πTD2Λ
θ
1)

2/3P
4/3
θ . (5.12)

This is the same semiclassical behavior as the one exhibited by the M2-brane as given in

(4.27) of [11]:

E2 = P2 + 35/3(2πTM2l
3
11Λ

6
1)

2/3P
4/3
θ ,

which is a generalization of the energy-charge relation E ∼ K2/3 for the case P 6= 0.

Now, we turn to the case of D2-branes rotating in the background (4.2). Again, we

have two possible embeddings of the type (3.1). The first one is given by the ansatz

X0 = Λ0
0ξ

0 +
(Λ0.Λ1)

Λ0
0

(

ξ1 + cξ2
)

, XI = ΛI
0ξ

0 + ΛI
1

(

ξ1 + cξ2
)

, (5.13)

r = r(ξ2), θ1 = Λθ
0ξ

0, φ2 = Λφ
0ξ0.

(5.13) is analogous to (5.1), but now the rotations are in the planes defined by the angles

θ1 and φ2 instead of θ1 and θ2.

The Lagrangian (3.27) takes the form

LA(ξ2) =
1

4λ0

(

K̃rrr
′2 − Ṽ

)

, K̃rr = −(2λ0TD2)
2r0Me−Φ,

Ṽ = r
1/2
0 C

(

v2
0 − Λ̄2

−A2 − Λ̄2
+B2 − Λ2

DD2
)

e−Φ,

where M , v2
0 , Λ̄2

± and Λ2
D are defined in (5.2), (4.5) and (4.15) respectively.

5In this limit v± remain finite.
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The solution ξ2(r) can be obtained from (5.3) by the replacement

Λ2
+ + Λ2

− → Λ̄2
+ + Λ̄2

− + 4Λ2
D/3. (5.14)

It is understood, that the solutions rmax = r1 and r2 of r′ = 0 are also correspondingly

changed (rmin remains the same). The explicit expressions for E and PI can be obtained

in the same way from (5.4). The computation of the conserved angular momenta Pθ and

Pφ according to (3.37) gives

Pθ =
(

Λθ
0 − Λφ

0 sin ψ0
1 sin θ0

2

)

JD
A1 +

(

Λθ
0 + Λφ

0 sin ψ0
1 sin θ0

2

)

JD
B1,

Pφ =
(

Λφ
0 sin θ0

2 − Λθ
0 sin ψ0

1

)

sin θ0
2J

D
A1 +

(

Λφ
0 sin θ0

2 + Λθ
0 sin ψ0

1

)

sin θ0
2J

D
B1

+Λφ
0 cos2 θ0

2J
D
D1,

where one obtains JD
A1, JD

B1 from (5.6), (5.7) by the replacement (5.14), and

JD
D1 = 8π2TD2

[

Ml5
(

Λ̄2
+ + Λ̄2

− + 4Λ2
D/3

)

(3l − r2)

]1/2

×
(

1 +
∆r1

2l

)1/2 (

1 +
∆r1

3l

)2 (

1 +
∆r1

4l

)1/2 (

1 +
∆r1

6l

)−1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(5)
D (1/2;−1/2,−2,−1/2, 1/2, 1/2; 1;

1

1 + 2l
∆r1

,
1

1 + 3l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−r2
∆r1

)

.

Taking r1 → ∞ in the above expressions, one obtains that in the semiclassical limit

the following energy-charge relation holds

E2
(

E2 − P2
)2

Λ2
1E

2 − (Λ1.P)2
=

23

35
(π2TD2)

2

(

P 2
θ +

3P 2
φ

3 − cos2 θ0
2

)

.

Obviously, this is a generalization of the relation (5.8) and for θ0
2 = π/2 has the same form.

Let us see if another D2-brane embedding for the target space metric (4.2) is possible.

It turns out that in this case such nontrivial solution exists if the non-diagonal part of

the metric (4.2) is absent. Otherwise, we have too many conditions on the embedding

parameters, which leads to vanishing kinetic term in the Lagrangian (3.27): K̃rr = 0. That

is why, we will consider the particular case ψ0
1 = 0. Then, the other possible ansatz is

X0 = Λ0
0ξ

0, XI = ΛI
0ξ

0, r = r(ξ2), θ1 = Λθ
1ξ

1 + Λθ
2ξ

2, φ2 = Λφ
0ξ0, (5.15)

i.e., we have D2-brane extended in the radial direction r, wrapped along the angular

coordinate θ1 and rotating in the plane given by the angle φ2. The embedding

X0 = Λ0
0ξ

0, XI = ΛI
0ξ

0, r = r(ξ2), θ1 = Λθ
0ξ

0, φ2 = Λφ
1ξ1 + Λφ

2ξ2

is also admissible, but it just interchanges the role of the angles θ1 and φ2.

– 19 –



J
H
E
P
0
8
(
2
0
0
6
)
0
2
9

For the ansatz (5.15), the Lagrangian (3.27) is given by

LA(ξ2) =
1

4λ0

(

K̃rrr
′2 − Ṽ

)

, K̃rr = −(2λ0TD2)
2r0(Λ

θ
1)

2
(

A2 + B2
)

e−Φ,

Ṽ = r
1/2
0 C

[

v2
0 − Λ2

(

A2 + B2
)

− Λ2
DD2

]

e−Φ,

where

Λ2 = (Λφ
0 )2 sin2 θ0

2.

v2
0 and Λ2

D are introduced in (4.5) and (4.15) respectively. The solutions of the equation

r′ = 0 determining the turning points of the periodic motion now are:

rmin = 3l, rmax = r1 = 3

√

2v2
0

3Λ2 + 2Λ2
D

= −r2.

Replacing the above expressions for K̃rr and Ṽ in (3.36), one obtains the solution:

ξ2(r) =
8

3
λ0TD2Λ

θ
1

[

l(3l − w+)(3l − w−)
(

3Λ2 + 2Λ2
D

)

(3l − r2) ∆r1

]1/2

(2∆r)3/4 ×

F
(7)
D (3/4;−1/4,−1/4, 1/4,−1/2,−1/2, 1/2, 1/2; 7/4; (5.16)

−∆r

2l
,−∆r

4l
,−∆r

6l
,− ∆r

3l − w+
,− ∆r

3l − w−
,− ∆r

3l − r2
,

∆r

∆r1

)

, w± = ±
√

3l.

The computation of the conserved quantities E, PI and Pφ2 ≡ Pφ, in accordance with

(3.37), gives

E

Λ0
0

=
PI

ΛI
0

= 4π2TD2Λ
θ
1

[

l(3l − w+)(3l − w−)
(

3Λ2 + 2Λ2
D

)

(3l − r2)

]1/2

× (5.17)

(

1 +
∆r1

2l

)1/2 (

1 +
∆r1

4l

)1/2 (

1 +
∆r1

6l

)−1/2

×
(

1 +
∆r1

3l − w+

)1/2 (

1 +
∆r1

3l − w−

)1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(6)
D (1/2;−1/2,−1/2, 1/2,−1/2,−1/2, 1/2; 1;

1

1 + 2l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−w+
∆r1

,
1

1 + 3l−w−
∆r1

1

1 + 3l−r2
∆r1

)

,

Pφ = sin2 θ0
2

(

JD
A2 + JD

B2

)

+ cos2 θ0
2J

D
D2,

where

JD
A2 = 4π2TD2Λ

φ
0Λθ

1

[

l5(3l − w+)(3l − w−)
(

3Λ2 + 2Λ2
D

)

(3l − r2)

]1/2

×
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(

1 +
∆r1

2l

)3/2 (

1 +
∆r1

4l

)1/2 (

1 +
∆r1

6l

)1/2

×
(

1 +
∆r1

3l − w+

)1/2 (

1 +
∆r1

3l − w−

)1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(6)
D (1/2;−3/2,−1/2,−1/2,−1/2,−1/2, 1/2; 1;

1

1 + 2l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−w+
∆r1

,
1

1 + 3l−w−
∆r1

1

1 + 3l−r2
∆r1

)

,

JD
B2 =

2

3
π2TD2Λ

φ
0Λθ

1

[

l3(3l − w+)(3l − w−)
(

3Λ2 + 2Λ2
D

)

(3l − r2)

]1/2

×

∆r1

(

1 +
∆r1

2l

)1/2 (

1 +
∆r1

4l

)3/2 (

1 +
∆r1

6l

)−1/2

×
(

1 +
∆r1

3l − w+

)1/2 (

1 +
∆r1

3l − w−

)1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(6)
D (1/2;−1/2,−3/2, 1/2,−1/2,−1/2, 1/2; 2;

1

1 + 2l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−w+
∆r1

,
1

1 + 3l−w−
∆r1

1

1 + 3l−r2
∆r1

)

,

JD
D2 = 4π2TD2Λ

φ
0Λθ

1

[

l5(3l − w+)(3l − w−)
(

3Λ2 + 2Λ2
D

)

(3l − r2)

]1/2

×
(

1 +
∆r1

2l

)1/2 (

1 +
∆r1

3l

)2 (

1 +
∆r1

4l

)1/2 (

1 +
∆r1

6l

)−1/2

×
(

1 +
∆r1

3l − w+

)1/2 (

1 +
∆r1

3l − w−

)1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(7)
D (1/2;−1/2,−2,−1/2, 1/2,−1/2,−1/2, 1/2; 1;

1

1 + 2l
∆r1

,
1

1 + 3l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−w+
∆r1

,
1

1 + 3l−w−
∆r1

1

1 + 3l−r2
∆r1

)

.

Going to the semiclassical limit r1 → ∞ in the above expressions for the conserved

quantities, one obtains the following relation between them

E2 = P2 +
37/3

21/3

(

πTD2Λ
θ
1

3 − cos2 θ0
2

)2/3

P
4/3
φ . (5.18)

This is a generalization of the energy-charge relation received in (5.12).

Our next task is to consider D2-branes rotating in the background (4.3). One admis-

sible embedding is

X0 = Λ0
0ξ

0 +
(Λ0.Λ1)

Λ0
0

(

ξ1 + cξ2
)

, XI = ΛI
0ξ

0 + ΛI
1

(

ξ1 + cξ2
)

, (5.19)

r = r(ξ2), φ1 = Λφ1
0 ξ0, φ2 = Λφ2

0 ξ0.
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It is analogous to (5.1) and (5.13), but now the rotations are in the planes given by the

angles φ1 and φ2.

The D2-brane Lagrangian (3.27) now reads

LA(ξ2) =
1

4λ0

(

K̃rrr
′2 − Ṽ

)

, K̃rr = −(2λ0TD2)
2r0Me−Φ,

Ṽ = r
1/2
0 C

(

v2
0 − Λ̃2

+A2 − Λ̃2
−B2 − Λ̃2

DD2
)

e−Φ,

where M , v2
0, Λ̃2

± and Λ̃2
D are defined in (5.2), (4.5) and (4.25) respectively. The values

for rmax = r1 and r2, the solution ξ2(r), and the expressions for E, PI , may be obtained

from the corresponding quantities for the embedding (5.13) by the replacements Λ̄2
∓ → Λ̃2

±,

Λ2
D → Λ̃2

D. For the conserved angular momenta Pφ1 and Pφ2 , (3.37) gives

Pφ1 =
(

Λφ1
0 sin θ0

1 + Λφ2
0 cos ψ0

1 sin θ0
2

)

sin θ0
1K

D
A1 (5.20)

+
(

Λφ1
0 sin θ0

1 − Λφ2
0 cos ψ0

1 sin θ0
2

)

sin θ0
1K

D
B1

+
(

Λφ1
0 cos θ0

1 + Λφ2
0 cos θ0

2

)

cos θ0
1K

D
D1,

Pφ2 =
(

Λφ2
0 sin θ0

2 + Λφ1
0 cos ψ0

1 sin θ0
1

)

sin θ0
2K

D
A1 (5.21)

+
(

Λφ2
0 sin θ0

2 − Λφ1
0 cos ψ0

1 sin θ0
1

)

sin θ0
2K

D
B1

+
(

Λφ1
0 cos θ0

1 + Λφ2
0 cos θ0

2

)

cos θ0
2K

D
D1,

where KD
A1, KD

B1 and KD
D1 can be obtained from JD

A1, JD
B1 and JD

D1 through the above

mentioned replacements.

The calculations show that in the semiclassical limit, the dependence of the energy on

the conserved charges, for the present case, is given by the equality:

E2
(

E2 − P2
)2

Λ2
1E

2 − (Λ1.P)2
= (5.22)

23

35
(π2TD2)

2

(

3 − cos2 θ0
2

)

P 2
φ1

+
(

3 − cos2 θ0
1

)

P 2
φ2

− 4Pφ1Pφ2 cos θ0
1 cos θ0

2

3 − cos2 θ0
1 − cos2 θ0

2 − cos2 θ0
1 cos2 θ0

2

.

This is another generalization of the energy-charge relation E ∼ K1/2, and for θ0
1 = θ0

2 =

π/2 has the same form as the relation in (5.8).

Finally, let us consider the other possible D2-brane embedding in the background (4.3).

It turns out that such nontrivial embedding do exists only for θ0
1 = θ0

2 ≡ θ0, and is given

by the ansatz

X0 = Λ0
0ξ

0, XI = ΛI
0ξ

0, r = r(ξ2), (5.23)

φ1 = Λφ
0ξ0 + Λφ

1ξ1 + Λφ
2ξ2, φ2 = Λφ

0ξ0 − Λφ
1ξ1 − Λφ

2ξ2.

It describes D2-brane configuration, which is analogous to the one in (5.9), but now the

rotations are in the planes defined by the angles φ1 and φ2 instead of θ1 and θ2.
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For this embedding, the Lagrangian (3.27) have the form

LA(ξ2) =
1

4λ0

(

K̃rrr
′2 − Ṽ

)

, K̃rr = −(2λ0TD2)
2r0

(

Λ̂2
1−A2 + Λ̂2

1+B2
)

e−Φ,

Ṽ = r
1/2
0 C

(

v2
0 − Λ̂2

+A2 − Λ̂2
−B2 − Λ̂2

DD2
)

e−Φ,

where v2
0 is defined in (4.5) and

Λ̂2
1± = 2(1 ± cos ψ0

1) sin2 θ0(Λφ
1 )2,

Λ̂2
± = 2(1 ± cos ψ0

1) sin2 θ0(Λφ
0 )2,

Λ̂2
D = 4cos2 θ0(Λφ

0 )2.

The constraint (3.33), K̃rrr
′2 + Ṽ = 0, leads to the same solutions of the equation r′ = 0,

as for the case just considered, but in terms of the new parameters Λ̂2
±, Λ̂2

D.

In accordance with (3.36), one obtains

ξ2(r) =
8

3
λ0TD2





l
(

Λ̂2
1+ + Λ̂2

1−

)

(3l − u+)(3l − u−)

3
(

Λ̂2
+ + Λ̂2

− + 4Λ̂2
D/3

)

(3l − r2) ∆r1





1/2

(2∆r)3/4 ×

F
(7)
D (3/4;−1/4,−1/4, 1/4,−1/2,−1/2, 1/2, 1/2; 7/4;

−∆r

2l
,−∆r

4l
,−∆r

6l
,− ∆r

3l − u+
,− ∆r

3l − u−
,− ∆r

3l − r2
,

∆r

∆r1

)

,

where

u± = l







Λ̂2
1+ − Λ̂2

1−

Λ̂2
1+ + Λ̂2

1−

±

√

√

√

√3 +

(

Λ̂2
1+ − Λ̂2

1−

Λ̂2
1+ + Λ̂2

1−

)2





.

The computation of the conserved charges (3.37) results in

E

Λ0
0

=
PI

ΛI
0

= 4π2TD2





l
(

Λ̂2
1+ + Λ̂2

1−

)

(3l − u+)(3l − u−)

3
(

Λ̂2
+ + Λ̂2

− + 4Λ̂2
D/3

)

(3l − r2)





1/2

× (5.24)

(

1 +
∆r1

2l

)1/2 (

1 +
∆r1

4l

)1/2 (

1 +
∆r1

6l

)−1/2

×
(

1 +
∆r1

3l − u+

)1/2 (

1 +
∆r1

3l − u−

)1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(6)
D (1/2;−1/2,−1/2, 1/2,−1/2,−1/2, 1/2; 1;

1

1 + 2l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−u+
∆r1

,
1

1 + 3l−u−
∆r1

1

1 + 3l−r2
∆r1

)

,

Pφ ≡ Pφ1 = Pφ2 =

Λφ
0

{

sin2 θ0
[(

1 + cos ψ0
1

)

KD
A2 +

(

1 − cos ψ0
1

)

KD
B2

]

+ 2cos2 θ0KD
D2

}

,
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where

KD
A2 = 4π2TD2





l5
(

Λ̂2
1+ + Λ̂2

1−

)

(3l − u+)(3l − u−)

3
(

Λ̂2
+ + Λ̂2

− + 4Λ̂2
D/3

)

(3l − r2)





1/2

×

(

1 +
∆r1

2l

)3/2 (

1 +
∆r1

4l

)1/2 (

1 +
∆r1

6l

)1/2

×
(

1 +
∆r1

3l − u+

)1/2 (

1 +
∆r1

3l − u−

)1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(6)
D (1/2;−3/2,−1/2,−1/2,−1/2,−1/2, 1/2; 1;

1

1 + 2l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−u+
∆r1

,
1

1 + 3l−u−
∆r1

1

1 + 3l−r2
∆r1

)

,

KD
B2 = 2π2TD2





l3
(

Λ̂2
1+ + Λ̂2

1−

)

(3l − u+)(3l − u−)

33
(

Λ̂2
+ + Λ̂2

− + 4Λ̂2
D/3

)

(3l − r2)





1/2

×

∆r1

(

1 +
∆r1

2l

)1/2 (

1 +
∆r1

4l

)3/2 (

1 +
∆r1

6l

)−1/2

×
(

1 +
∆r1

3l − u+

)1/2 (

1 +
∆r1

3l − u−

)1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(6)
D (1/2;−1/2,−3/2, 1/2,−1/2,−1/2, 1/2; 2;

1

1 + 2l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−u+
∆r1

,
1

1 + 3l−u−
∆r1

1

1 + 3l−r2
∆r1

)

,

KD
D2 = 4π2TD2





l5
(

Λ̂2
1+ + Λ̂2

1−

)

(3l − u+)(3l − u−)

3
(

Λ̂2
+ + Λ̂2

− + 4Λ̂2
D/3

)

(3l − r2)





1/2

×

(

1 +
∆r1

2l

)1/2 (

1 +
∆r1

3l

)2 (

1 +
∆r1

4l

)1/2 (

1 +
∆r1

6l

)−1/2

×
(

1 +
∆r1

3l − u+

)1/2 (

1 +
∆r1

3l − u−

)1/2 (

1 +
∆r1

3l − r2

)−1/2

×

F
(7)
D (1/2;−1/2,−2,−1/2, 1/2,−1/2,−1/2, 1/2; 1;

1

1 + 2l
∆r1

,
1

1 + 3l
∆r1

,
1

1 + 4l
∆r1

,
1

1 + 6l
∆r1

,
1

1 + 3l−u+
∆r1

,
1

1 + 3l−u−
∆r1

1

1 + 3l−r2
∆r1

)

.

Taking the semiclassical limit in the above expressions for E, PI and Pφ, which in the

case under consideration corresponds to

r1,2 → ±2

√

3v2
0

Λ̂2
+ + Λ̂2

− + 4Λ̂2
D/3

→ ∞,
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we receive that the energy depends on PI and Pφ as follows

E2 = P2 + 37/3

(

2πTD2Λ
φ
1 sin θ0

4 − sin2 θ0

)2/3

P
4/3
φ . (5.25)

This is another generalization of the energy-charge relation given in (5.12).

6. Comments and conclusions

In this paper, we considered rotating strings and D2-branes on type IIA background, which

arises as dimensional reduction of M-theory on manifold of G2 holonomy, dual to N = 1

gauge theory in four dimensions. We obtained exact solutions and explicit expressions

for the energy and other momenta (charges), which are conserved due to the presence of

background isometries. They were given in terms of the hypergeometric functions of many

variables F
(n)
D (a; b1, . . . , bn; c; z1, . . . , zn), where for the different cases considered, n varies

from one to seven.

We investigated the semiclassical limit of the conserved quantities and received different

types of relations between them. Our aim was to check if strings and D2-branes rotating

in this ten dimensional type IIA background, can reproduce the energy-charge relations

obtained in [5] and [11] for rotating M2-branes on G2 manifolds. We found that the rotating

strings can reproduce only one type of semiclassical behavior, exhibited by rotating M2-

branes. Our results are the following

E2 = P2 + 2πT (6r0)
1/2 (

P 2
θ1

+ P 2
θ2

)1/2
,

E2 = P2 + 2πT (6r0)
1/2

(

P 2
θ +

3P 2
φ

3 − cos2 θ0
2

)1/2

,

E2 = P2 + 2πT (6r0)
1/2 ×

[
(

3 − cos2 θ0
2

)

P 2
φ1

+
(

3 − cos2 θ0
1

)

P 2
φ2

− 4Pφ1Pφ2 cos θ0
1 cos θ0

2

3 − cos2 θ0
1 − cos2 θ0

2 − cos2 θ0
1 cos2 θ0

2

]1/2

.

These equalities are generalizations of the E ∼ K1/2 behavior and correspond to the

following M2-brane energy-charge relation [11]

{

E2
(

E2 − P2
)

− (2π2TM2l
3
11)

2
{

(Λ1 × Λ2)
2 E2 − [(Λ1 × Λ2) × P]2

}}2
(6.1)

−6(2π2TM2l
3
11)

2E2
[

Λ2
1E

2 − (Λ1.P)2
] (

P 2
θ + P 2

θ̃

)

= 0.

We also showed that the rotating D2-branes reproduce two types of the semiclassical

energy-charge relations known for membranes in M-theory. The first type is represented

by

E2
(

E2 − P2
)2

Λ2
1E

2 − (Λ1.P)2
=

23

35
(π2TD2)

2
(

P 2
θ1

+ P 2
θ2

)

,
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E2
(

E2 − P2
)2

Λ2
1E

2 − (Λ1.P)2
=

23

35
(π2TD2)

2

(

P 2
θ +

3P 2
φ

3 − cos2 θ0
2

)

,

E2
(

E2 − P2
)2

Λ2
1E

2 − (Λ1.P)2
=

23

35
(π2TD2)

2

(

3 − cos2 θ0
2

)

P 2
φ1

+
(

3 − cos2 θ0
1

)

P 2
φ2

− 4Pφ1Pφ2 cos θ0
1 cos θ0

2

3 − cos2 θ0
1 − cos2 θ0

2 − cos2 θ0
1 cos2 θ0

2

.

These are generalizations of the dependence E ∼ K1/2 and correspond to (6.1). For the

second type, we received the equalities

E2 = P2 + 35/3(2πTD2Λ
θ
1)

2/3P
4/3
θ ,

E2 = P2 +
37/3

21/3

(

πTD2Λ
θ
1

3 − cos2 θ0
2

)2/3

P
4/3
φ ,

E2 = P2 + 37/3

(

2πTD2Λ
φ
1 sin θ0

4 − sin2 θ0

)2/3

P
4/3
φ ,

which are generalizations of the dependence E ∼ K2/3 and correspond to [11]

E2 = P2 + 35/3(2πTM2l
3
11Λ

6
1)

2/3P
4/3
θ .

We were not able to obtain the other three types of semiclassical behavior discovered

in [11] for M2-branes

E2 = P2 +
9

2l2
P 2

+ − (6π2TM2l
3
11Λ

−
1 )2/3P

4/3
+ ,

{

E2
[

E2 − P2 − (3/l)2P 2
+

]

− (2π2TM2l
3
11)

2
{

(Λ1 × Λ2)
2 E2 − [(Λ1 × Λ2) × P]2

}}2

−27(3πTM2l
3
11)

2E2
[

Λ2
1E

2 − (Λ1.P)2
]

P 2
+ = 0,

{

E2
[

E2 − P2 − (3/2l)2P 2
+

]

− (2π2TM2l
3
11)

2
{

(Λ1 × Λ2)
2 E2 − [(Λ1 × Λ2) × P]2

}}2

−(6π2TM2l
3
11)

2E2
[

Λ2
1E

2 − (Λ1.P)2
]

P 2
− = 0,

which generalize the relations

E − K ∼ K1/3, E − K ∼ const, E ∼ K1 + const
K2

K1
.

One reason is that after the dimensional reduction from eleven to ten dimensions, the term

in the background metric proportional to C2(r) disappears (compare (2.1) with (2.3)).

Besides, we considered very restricted class of solutions, depending only on the radial

background coordinate. However, these are just kind of technical reasons. To our opinion,

the physical cause behind is that other types of M2-brane’s semiclassical behavior should be

reproduced in ten dimensions by more complex non-perturbative states like bound states

of fundamental strings and D-branes. Support for this conjecture are the results obtained

in [8], where such relation has been found for flat space-time. More precisely, starting with

– 26 –



J
H
E
P
0
8
(
2
0
0
6
)
0
2
9

rotating membranes solutions in flat eleven dimensions, and compactifying on a circle and

on a torus, the authors of [8] have been able to identify non-perturbative states of type IIA

and type IIB superstring theory, which represent spinning bound states of D-branes and

fundamenal strings.

We note that in considering the semiclassical limit (large charges), we take into account

only the leading terms in the expressions for the conserved quantities. However, there is

no problem to include the higher order terms. An example is given in (4.31).

For comparison, we now give two known results about the energy-charge relations, ob-

tained in the semiclassical limit, for strings moving in other curved type IIA backgrounds6.

Rotating strings in a warped AdS6 × S4 geometry have been considered in [16]. The

warped AdS6 × S4 is vacuum solution of the massive type IIA supergravity, which is

expected to be dual to an N = 2, D = 5 super-conformal Yang-Mills theory. For large

conserved charges, the following relation between them has been found

E − 3

2
J = c1 +

c2

J5
+ · · · .

At the leading order, this relation is of the type E − K ∼ const, and is reproduced by

one of the M2-brane configurations described above, but not by the strings and D2-branes

considered here.

Pulsating strings in the same warped AdS6 ×S4 background have been semiclassically

quantized in [17] with the result

E2 = (J + 7/3)(J + 4) + quantum corrections,

which in the leading order gives the E − K ∼ const behavior once again.

It seems to us that an interesting task, which deserves to be investigated, is the semi-

classical behavior of the strings and D2-branes in the γ-deformed [18] background (2.1),

in order to see the difference with the results obtained here, and to estimate the role of

the Kaluza-Klein modes, following the idea developed in [19], and applied for semiclassical

strings in [20]. This problem is under investigation and we hope to report about some

progress soon.
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A. Hypergeometric functions F
(n)
D

Here, we give some properties of the hypergeometric functions of many variables F
(n)
D used

in our calculations. By definition [21], for |zj | < 1,

F
(n)
D (a; b1, . . . , bn; c; z1, . . . , zn) =

∞
∑

k1,...,kn=0

(a)k1+···+kn
(b1)k1 . . . (bn)kn

(c)k1+···+kn

zk1
1 . . . zkn

n

k1! . . . kn!
,

6See also [15],where spinning and rotating closed string solutions in AdS5 × T 1,1 background have been

found, and has been shown how these solutions can be mapped onto rotating closed strings embedded in

configurations of intersecting branes in type IIA string theory.
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where

(a)k =
Γ(a + k)

Γ(a)
,

and Γ(z) is the Euler’s Γ-function. In particular, F
(1)
D (a; b; c; z) = 2F1(a, b; c; z) is the

Gauss’ hypergeometric function, and F
(2)
D (a; b1, b2; c; z1, z2) = F1(a, b1, b2; c; z1, z2) is one of

the hypergeometric functions of two variables.

1. F
(n)
D (a; b1, . . . , bi, . . . , bj , . . . , bn; c; z1, . . . , zi, . . . , zj , . . . , zn) =

F
(n)
D (a; b1, . . . , bj , . . . , bi, . . . , bn; c; z1, . . . , zj , . . . , zi, . . . , zn).

2. F
(n)
D (a; b1, . . . , bn; c; z1, . . . , zn) =
n

∏

i=1

(1 − zi)
−bi F

(n)
D

(

c − a; b1, . . . , bn; c;
z1

z1 − 1
, . . . ,

zn

zn − 1

)

.

3. F
(n)
D (a; b1, . . . , bi−1, bi, bi+1, . . . , bn; c; z1, . . . , zi−1, 1, zi+1, . . . , zn) =

Γ(c)Γ(c − a − bi)

Γ(c − a)Γ(c − bi)
F

(n−1)
D (a; b1, . . . , bi−1, bi+1, . . . , bn; c − bi; z1, . . . , zi−1, zi+1, . . . , zn).

4. F
(n)
D (a; b1, . . . , bi−1, bi, bi+1, . . . , bn; c; z1, . . . , zi−1, 0, zi+1, . . . , zn) =

F
(n−1)
D (a; b1, . . . , bi−1, bi+1, . . . , bn; c; z1, . . . , zi−1, zi+1, . . . , zn).

5. F
(n)
D (a; b1, . . . , bi−1, 0, bi+1, . . . , bn; c; z1, . . . , zi−1, zi, zi+1, . . . , zn) =

F
(n−1)
D (a; b1, . . . , bi−1, bi+1, . . . , bn; c; z1, . . . , zi−1, zi+1, . . . , zn).

6. F
(n)
D (a; b1, . . . , bi, . . . , bj , . . . , bn; c; z1, . . . , zi, . . . , zi, . . . , zn) =

F
(n−1)
D (a; b1, . . . , bi + bj , . . . , bn; c; z1, . . . , zi, . . . , zn).

7. F
(2n+1)
D (a; a − c + 1, b2, b2, . . . , b2n, b2n; c;−1, z2,−z2 . . . , z2n,−z2n) =

Γ(a/2)Γ(c)

2Γ(a)Γ(c − a/2)
F

(n)
D (a/2; b2, . . . , b2n; c − a/2; z2

2 , . . . , z2
2n).

8. F
(2n+1)
D (c − a; a − c + 1, b2, b2, . . . , b2n, b2n; c;

1/2,− z2

1 − z2
,

z2

1 + z2
, . . . ,− z2n

1 − z2n
,

z2n

1 + z2n

)

=

Γ(a/2)Γ(c)

2c−aΓ(a)Γ(c − a/2)
F

(n)
D

(

c − a; b2, . . . , b2n; c − a/2;− z2
2

1 − z2
2

, . . . ,− z2
2n

1 − z2
2n

)

.

9. F
(2)
D (a; b, b; c; z,−z) = 3F2

(

a/2, (a + 1)/2, b

c/2, (c + 1)/2; z2

)

.
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